Publications

You can also find my articles on my Google Scholar profile.

VERA-V: Variational Inference Framework for Jailbreaking Vision-Language Models

Published in Arxiv:2510.17759, 2025

Vision-Language Models (VLMs) extend large language models with visual reasoning, but their multimodal design also introduces new, underexplored vulnerabilities. Existing multimodal red-teaming methods largely rely on brittle templates, focus on single-attack settings, and expose only a narrow subset of vulnerabilities. To address these limitations, we introduce VERA-V, a variational inference framework that recasts multimodal jailbreak discovery as learning a joint posterior distribution over paired text-image prompts. This probabilistic view enables the generation of stealthy, coupled adversarial inputs that bypass model guardrails. We train a lightweight attacker to approximate the posterior, allowing efficient sampling of diverse jailbreaks and providing distributional insights into vulnerabilities. VERA-V further integrates three complementary strategies: (i) typography-based text prompts that embed harmful cues, (ii) diffusion-based image synthesis that introduces adversarial signals, and (iii) structured distractors to fragment VLM attention. Experiments on HarmBench and HADES benchmarks show that VERA-V consistently outperforms state-of-the-art baselines on both open-source and frontier VLMs, achieving up to 53.75% higher attack success rate (ASR) over the best baseline on GPT-4o.

BOOD: Boundary-based Out-Of-Distribution Data Generation

Published in Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025

Harnessing the power of diffusion models to synthesize auxiliary training data based on latent space features has proven effective in enhancing out-of-distribution (OOD) detection performance. However, extracting effective features outside the in-distribution (ID) boundary in latent space remains challenging due to the difficulty of identifying decision boundaries between classes. This paper proposes a novel framework called Boundary-based Out-Of-Distribution data generation (BOOD), which synthesizes high-quality OOD features and generates human-compatible outlier images using diffusion models. BOOD first learns a text-conditioned latent feature space from the ID dataset, selects ID features closest to the decision boundary, and perturbs them to cross the decision boundary to form OOD features. These synthetic OOD features are then decoded into images in pixel space by a diffusion model. Compared to previous works, BOOD provides a more efficient strategy for synthesizing informative OOD features, facilitating clearer distinctions between ID and OOD data. Extensive experimental results on common benchmarks demonstrate that BOOD surpasses the state-of-the-art method significantly, achieving a 29.64% decrease in average FPR95 (40.31% vs. 10.67%) and a 7.27% improvement in average AUROC (90.15% vs. 97.42%) on the Cifar-100 dataset.